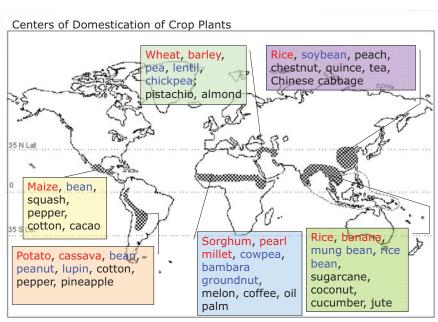
Role of Pulse Crops in Achieving Food and Nutritional Security

Paul Gepts Plant Sciences University of California, Davis

Dry Grain Pulses CRSP GLOBAL PULSE RESEARCHERS MEETING February 13 – 17, 2012; Kigali, Rwanda


Outline

- Role of Grain Legumes
- Goals of Grain Legume Improvement
- Key Ingredients
 - Biodiversity:
 - Farmer role in conservation
 - Ecological genomics
 - Breeding methods & genomics
 - Marker-assisted selection
 - Participatory breeding
 - The role of phenotyping in breeding for abiotic stresses
 - Funding
- Conclusions

Role of Grain Legumes or Pulses

Modified from Gepts 2004

Goals of Grain Legume (Pulse) Improvement

Goals

- Maximize yield within existing phenological constraints and for target environment
- Minimize inputs and maximize input use efficiency
- Improved human nutrition
- Farmer acceptance
- Consumer acceptance and marketability
- Any approach is fine, regardless of technology!

. 9 Key Ingredients: Biodiversity

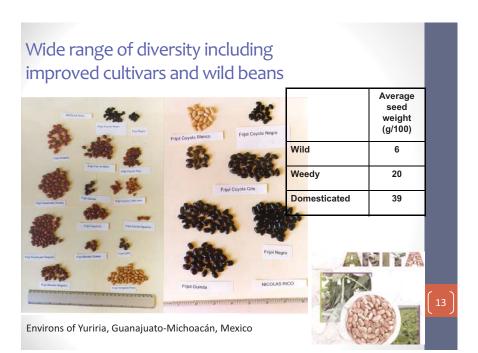
1 Farmer Role in Conservation

10

Role of Farmers?

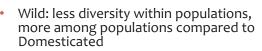
Photos: D. Zizumbo

Location of Michoacán-Guanajuato experiments



Cepio	15
Piñicuaro	20
Santa Ana Maya	20
Tupátaro	25
Yuriria	60
San Agustín del Pulque	110

Distance*


* Between wild and domesticated populations

Payró de la Cruz et al. Genet Res Crop Evol 2005

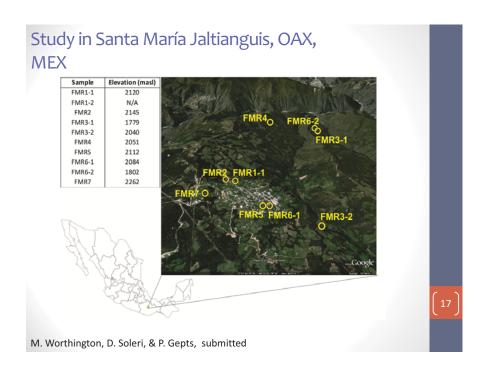
Different Genetic Structure in W & D

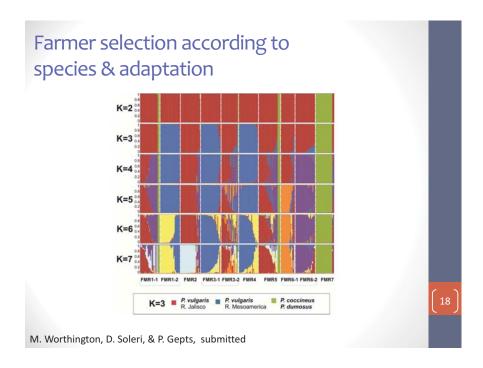
	Н	h	G_{ST}	Nm
Wild	0.24	0.13-0.18	0.40	0.78
Landraces	0.26	0.22-0.29	0.26	1.40
Breeding lines		0.03-0.06		

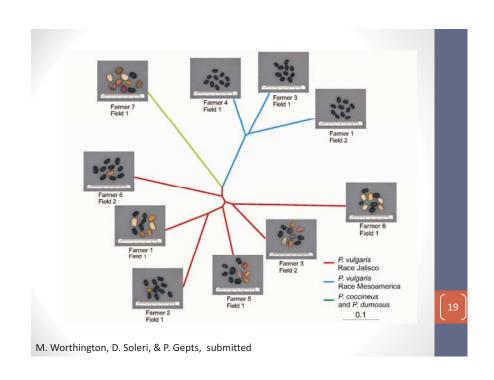
- Higher gene flow in Domesticated:
 - Diversity within landraces: outcrosses
 - Seed exchange among farmers

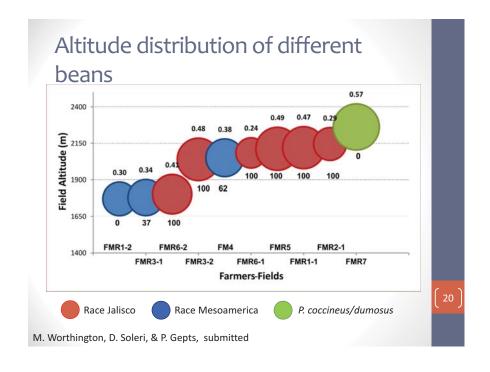
Zizumbo-Villarreal et al. 2005

Study in Yuriria




15


S. Barber & P. Gepts, unpubl. results


Distinguishing two groups in a single region (Yuriria, GUA, MEX)

	Frijol	Frijola
	late harvest in Nov-Dec/	early harvest in Sep-Oct/
	thicker seedcoats – longer to	thinner seedcoats – shorter to
L	cook/ longer storage time	cook/ shorter storage time
	apetito morado	amapola delgada
	cacahuate	color de rata
	cafe	flor de mayo
	higuerillo	flor de mayo gruesa
S	higuerillo delgado	flor de mayo delgada
n sa	higuerillo grueso	flor de junio
r. deptis, unipubli, results	huamuchil	flor de junio - <i>Marcela</i>
indi	morado	japonés de bola
'n,	morado bola	morada (Rosita)
באר	morado grueso	ojo de cabra
5	guindo (rojo)	ojo de liebre
Ø	palacio	peruano
Dal Del	pinto	de castilla
. pa	viudo	

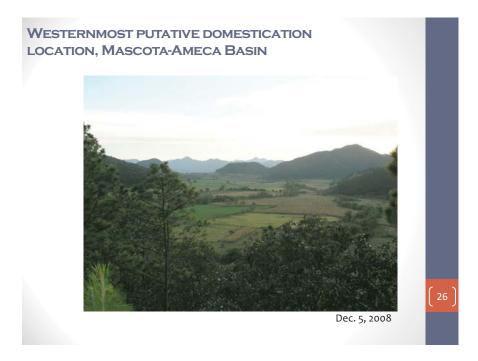
Conclusions: Farmer-Involvement in farm biodiversity management

- Awareness of adaptation of germplasm segments
 - Climate
 - Phenology
- What type of selection?
 - Stabilizing selection: Maintenance of type
 - Directional selection? Yield?
 - Maintain genetic diversity; Dynamic system: not a gene bank nor a museum
- · Niche for intervention by participatory breeding
 - Improved germplasm
 - Selection procedure

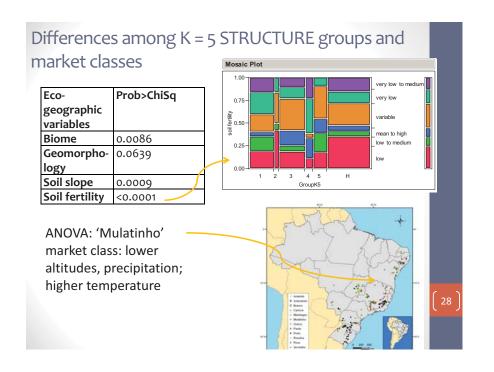
2:

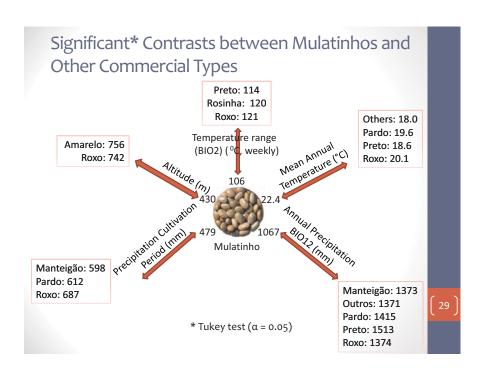
Key Ingredients: Biodiversity

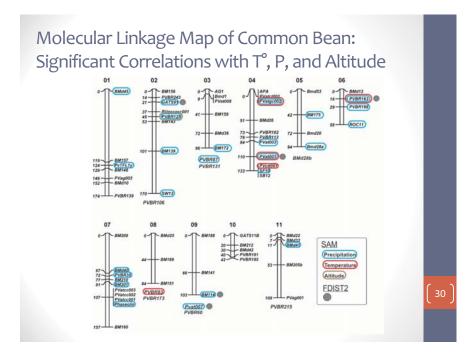
2 Ecological Genomics


22

THE SUGGESTED DOMESTICATION CENTER OF COMMON BEAN IN MEXICO




M. Kwak, J. Kami & P. Gepts, Crop Sci., March 2009



Eco-geographic variation of bean landraces in Brazil Biome: mainly semideciduous forest, pine forest Only difference between A and M? Altitude: ~ 100m Yearly average T°: 23C Average rainfall growing season: 549 mm

What is next?

- Evaluation of plant materials (a.k.a. phenotyping)
 - Yield and component traits
 - Germplasm
 - Locations/years
- High density of markers
 - Fragments (SSRs, indels), SNPs
 - Number: the more the better
- Other sources of genomic/genetic information
 - Transcriptomics
 - Metabolomics

Key Ingredients: Breeding Methods & Genomics

Marker-assisted selection

34

Progress in CBB resistance breeding

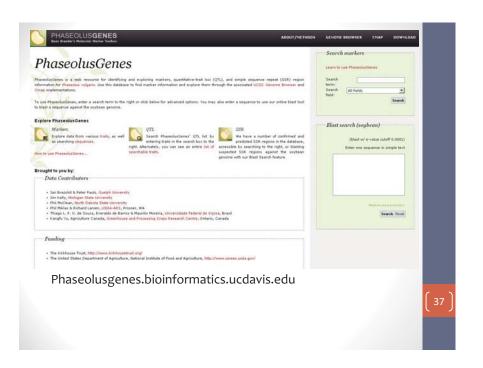
Miklas et al. 2006

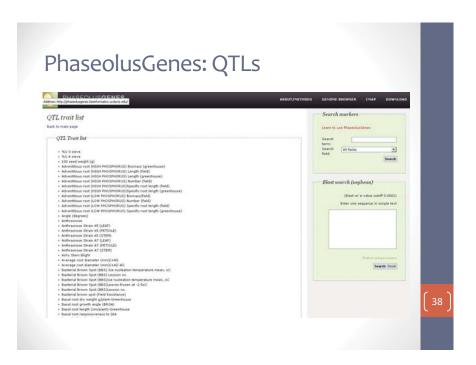
Table 1. Representative dry bean lines and cultivars with resistance to common bacterial blight (CBB) derived from individual or combined sources

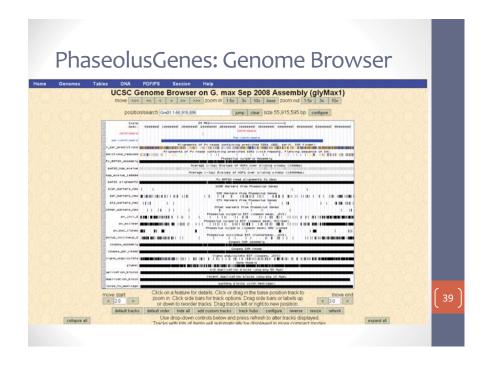
	Sources				
.970, 1994, 1973 Lines & cultivars	P. vulgaris			P. acutifolius	Disease
	Montana No. 5	PI 207262	P. coccineus	(Tepary markers)	score (1-9)*
tules, Chase, Montcalm	×				6, 7, 8
XAN 112, BAT 93	×	×			4, 5, 6
XR 235-1-1			×		5, 6
USPT-CBB-1	×		×		4, 5, 6
OAC 88-1				×(SU91)	4, 5, 6
HR 67				× (BC420)	3, 4, 5
XAN 159, CBB-Teebus				× (SU91 and BC420)	2, 3, 4
ABCP-8, USDK-CBB-15	×			× (SU91)	3, 4, 5
Wilkinson 2	×		×	× (SU91 and BC420)	2, 3, 4
XAN 309, VAX lipes 3-6	×	×		× (SU91)	1, 2

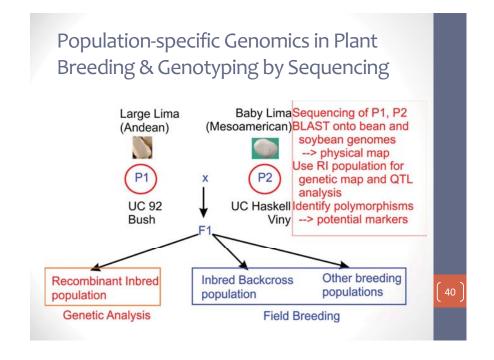
1999

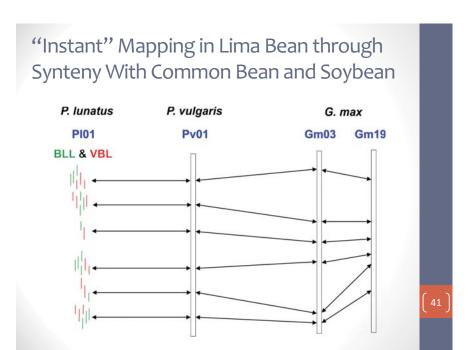
- improved screening methods;
 identified resistant *P. vulgaris*, *P. coccineus*, and *P. acutifolius* germplasm;
 e.g., Miklas et al. 2003; Singh & Nuñez 1999; etc.
- 3) molecular mapping to tag resistance loci (Nodari et al. 1993; Miklas et al. 1996; Jung et al. 1997; Miklas et al. 2000); and
- 4) pyramided resistance genes (Miklas et al. 2006b; Mutulu et al. 2005).

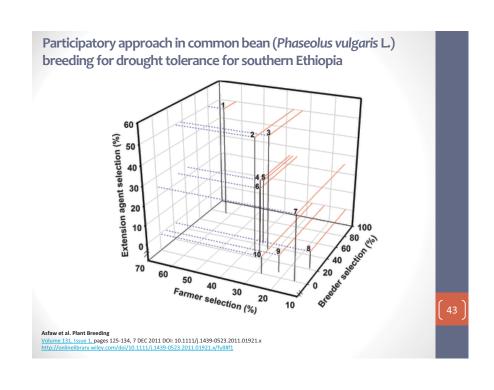

Where do we go from here?


- Other diseases?
 - White mold (Miklas et al. 2009; Soule et al. 2011; Mkwaila et al. 2011; Pérez-Vega et al. 2012)
 - Web blight (Godoy-Lutz et al. 2003; Takegami et al. 2004; Beaver et al. 2012)
- Generalize use of MAS?
 - · Remains a tool and not a goal
 - Under what conditions is MAS applicable or not as a tool?
 - Other traits and genetic architecture (QTLs)
- Coordination among "players": Kirkhouse Trust ABC and WAC project, CIAT
 - Development of new markers: whole-genome sequencing and PhaseolusGenes database
- Other species: e.g., P. lunatus




Kirkhouse Trust: African Bean Consortium (ABC) Project

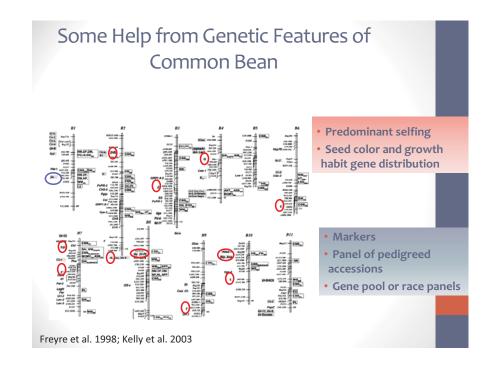

- ➤ Main Goal: Introduce MAS capability in East African bean breeding programs
 - Focused on BCMV, ALS, ANT, CBB, Pythium RR → Preferred variety + 2-3 resistances
- > Institutional improvement focused on Africa
 - o National programs; education within Africa
- Main strategic elements
 - Human infrastructure: markers, plant pathology (CIAT-Kawanda)
 - o Physical infrastructure: DNA fragment analysis; SNPs?
- > At UC Davis:
 - o 1x methyl-filtrated BAT93 sequencing
 - o PhaseolusGenes database
 - Training of African students (applied bioinformatics, lab analysis, PhaseolusGenes)



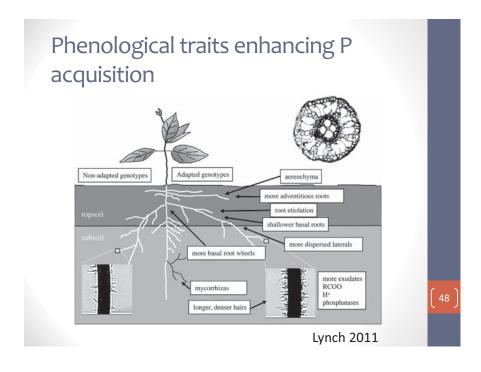
Key Ingredients: Breeding Methods & Genomics

Participatory Breeding

42


Why "do" participatory breeding?

Gender Differences


Top 6 ranking traits		
Men	Women	
1	1	
	2	
2	5	
4	3	
3	4	
5		
	6	
6		
	Men 1 2 4 3 5	

- Cultural and gender differences
- Environmental differences: broad vs. narrow adaptation
- G x E
- Novelties & flexibility

Results of Breeding for a "New" Bean Type: Azufrado Peruano: Azufrado (M) x Canario (A) Effect of selection on organization of genetic diversity in breeding gene pools • Distribution of recombinants in genome • "Haplotype blocks" in relation to agronomically important genes *** **Partition 1 (ELE)** **Partition 2 (ELE)** **Partition 1 (ELE)** **Partition 2 (ELE)** **Partition 1 (ELE)** **Partition

Key Ingredients: The Role of Phenotyping in Breeding for Abiotic Stresses

Drought (Beebe et al. 2008)

- Breeding for drought tolerance in Mesoamerican market classes (red, black, carioca, mulatinho)
- · Contrasting selection environments
- Visual selection for well-filled pods (effective partitioning of photosynthates into seeds), in addition to yield per se
- Under drought stress: substantial improvement (~ 20-100%-> controls) in all color classes
- Under well-watered conditions: some classes and locations: up to ~15-20% > control
- Some lines also had tolerance to low soil P → can combine two important stresses

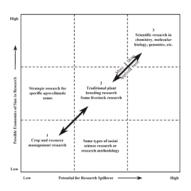
Biological nitrogen fixation

- Legume-Rhizobium specificity (or lack thereof) vs. N fixing ability
- Progress has been made towards understanding the initial steps of symbiosis at the molecular level:
 - initial recognition of Rhizobium by host ~ functionally conserved among legumes
- Limited progress towards understanding subsequent molecular steps:
 - Bacterial effector proteins and molecular targets in host cells; evolutionary diverged
- Supra-molecular processes: Rhizobial adaptation, especially to low fertility

50

Den Herder & Parniske 2009

Key Ingredients: Funding


Funding deficit for grain legume research

Comparison of Funding among Legume and Cereal CRP3s ^a				
CRP 3 (Number of Species)	Years	Amount (M USD)	Total Amounts (M USD)	
Legumes (8)	2011-13	138	138	
Dryland Cereals (5)	3	79		
Maize (1)	3	238	1138	
Rice (1 or 2)	5	593		
Wheat (1)	3	228		

^a Information from various documents or web pages on http://www.cgiarfund.org/cgiarfund/research_portfolio

52

Coordination among different players

- Transition between breeding and genetics/genomics
- Breeding on station and participatory breeding, including social sciences
- Trait-based breeding and physiology

From Dalrymple 2008

See also: Feed the Future:

http://www.feedthefuture.gov/sites/default/files/resource/files/FTF_research_strategy.pdf

٠___

Conclusions

- Improved management and utilization of germplasm:
 - Joint analysis of agronomic, molecular, and GIS information (ecological genomics and germplasm conservation and utilization)
 - Farmers play a role in maintenance of diversity and practice "stabilizing selection"
- Molecular markers
 - · Understanding of inheritance of traits
 - Marker-assisted selection? Subordinated to phenotypic selection
 - Species, crop, markers (high-throughput), technology
- · Participatory or distributed breeding
- Specific phenotypic traits informed by physiology with overall yield becomes critically limiting (in contrast with DNA sequence)
- Nitrogen fixation:
 - · Combine selectivity and high BNF
- Funding:
 - Take into account nitrogen, rotational, and nutritional contributions of legumes